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LETTER TO THE EDITOR 

Regular random fractals and the n-parameter model? 

James E Martin and Keith D Keefer 
Sandia National Laboratories, Albuquerque, NM 87185, USA 

Received 15 April 1985 

Abstract. Two models of fractal objects are presented. The first model represents a new 
class of fractals which is intermediate to statistical fractals and exact fractals in that each 
configuration of the random ensemble has an exact (and adjustable) fractal dimension. 
The second model has a continuously adjustable backbone dimension and can be used to 
directly generate conducting backbones. 

Currently, volume fractals fall into two completely distinct classes: exact fractals such 
as the Sierpinski gasket and Halvin carpet (see Mandelbrot 1977), and statistical fractals 
such as percolation clusters (Stauff er 1979) and Witten-Sander aggregates (Witten and 
Sander 1981, 1982). In the first class the fractal dimension is a well defined exact 
property of the cluster while in the second class the fractal dimension is defined only 
for the ensemble. In this letter we demonstrate a third class of fractals, which we call 
regular random fractals (RRFS), in which individual members of the random ensemble 
have well defined exact scaling properties. Also the fractal dimension, df, of this new 
model can be adjusted over a countably infinite set of values which span the physical 
limits 1 s drS  d, where d is the dimension of space. 

We also present a second, related model in which fluctuations are admitted to the 
ensemble. In this n-parameter model the number of parameters can be made arbitrarily 
large. Computer simulations are presented for the n = 2 model in two dimensions and 
it is found that in this case both the fractal dimension and the fractal dimension of 
the conducting backbone (Shlifer er a1 1979), dBB, can be adjusted over a set of 
uncountably infinite values. Simulations show that the upper limit of the conducting 
backbone dimension is dgB = df, which corresponds to the direct generation of fully 
conducting fractals. These fully conducting fractals have a ‘link-blob’ morphology 
and may be a suitable model for the percolation backbone if the fractal dimension is 
suitably adjusted. 

The method of constructing RRFS proceeds iteratively and involves three steps: 
partitioning, deletion and renormalisation. The first generation is obtained from the 
zeroth generation, the d-dimensional cube, in the following way: (1) the d-dimensional 
cube is partitioned into p d  equal-volume d-dimensional cubes by slicing the original 
hypercube p - 1 times on each side; (2) q of the resultant p d  hypercubes are randomly 
deleted such that the remaining hypercubes are connected, where two cubes are 
considered connected if they share a ( d  - 1)-dimensional edge; (3) the resultant cluster 
is renormalised by the factor p in each dimension. The process is continued ad injnitum 

t This work was performed at Sandia National Laboratories supported by the US Department of Energy 
under contract number DE-AC04-76DW0789. 
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(while always maintaining local connectivity), and a random cluster of fractal 
dimension 

dr = log( Pd - q)/log(p) 

emerges from the iteration, where p and q are integers such that 0 s  q s p d  - p  (i.e. 
d 2 d f s  1). Here p d  - q is the ratio of the masses of the ith and ( i  + 1)th generations, 
and p is the factor by which the length scale is transformed. 

The stepwise generation of a d = 2 regular random fractal is shown in figure 1 for 
the case p = 2 ,  q = 1. In this case dr= log(3)/log(2) = 1.585, which is just the fractal 
dimension of the Sierpinski gasket. In fact, the Sierpinski gasket is a member of this 
regular random ensemble, and a Havlin carpet, with fractal dimension log(8)/log(3), 
is a member of the d = 2 ,  p = 3, q = 1 ensemble. Many other familiar fractals emerge 
from these ensembles as well. 

b 
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Figure 1. The first five generations of a regular random fractal (df=log(3)/log(2)) are 
shown clockwise from the top left. The fifth generation cluster has a mass of 243 sites-the 
zeroth generation, of mass 1, is not shown. 

Each of the regular random fractals can be transformed into an n = p d  = p parameter 
continuous random fractal model. In this model the parameter q is allowed to fluctuate, 
and is therefore only statistically defined. Let f; be the probability, after partitioning, 
of deleting j of p d  hypercubes. Then the mean value of q is 

n 

(9) = C if; 
0 

where the are normalised by X h  = 1. The fractal dimension of the ensemble is then 
just log( p d  - (q))/log( p ) .  This class of many-parameter fractals is very complex-in 
general there are n parameters, which leaves n - 1 degrees of freedom after the fractal 
dimension is specified. What properties do  these n - 1 parameters control? Are the 
additional parameters irrelevant insofar as exponents are concerned? To get some 
idea of the behaviour of these n-parameter fractals, we have chosen to study the 
simplest example, where d = p = 2. 
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In this two-parameter model it is useful to define parameters which depend on the 
f ;  in a nonlinear fashion. The first parameter is simply log( p d  - (q))/log( p ) ,  the fractal 
dimension. The second parameter, conveniently defined to lie on [0, 11, is 

a = (f* -E '") / ( r  -E'") 
where E'" is the minimum possible probability of deleting two squares consistent with 
obtaining a given fractal dimension, and E"" is the corresponding maximum. In terms 
of (q ) ,  these are 

rx = ( d / 2  

0 (4)s 1 
( 4 ) >  1. Ei" = { ( q )  - 1 

The striking variation of the geometry of clusters produced by this model can be 
seen in figure 2, where clusters are shown for df=  1.585, 1.4 and 1.2. The clusters on 
the left-hand side were made with a = 0 and the clusters on the right were made with 
a = 0.8. It is immediately apparent that a = 0 clusters have a homogeneous appear- 
ance-the neighbourhood of any site is roughly equivalent-whereas the a = 0.8 clusters 
have an extremely heterogeneous appearance, with both 'urban' and 'rural' areas. Also, 
the a = 0 fractals have a highly branched structure, with very few circuits, whereas the 
a = 0.8 fractals have many circuits (especially those of length 4) and very few branches. 

Although many, and perhaps all, of the exponents which are now used to describe 
fractals are dependent on a, the most apparent difference between these clusters is the 
degree of branching, which can be quantified by the fractal dimension of their conduct- 
ing backbone. This conducting backbone may be defined as the sites which carry 
current when electrodes are placed at the topologically maximally separated sites of 
a cluster, or may also be thought of as the intersection of all self-avoiding walks 
between these sites (Shlifer er al 1979). Since we obtained the conducting backbone 
by the method of burning (Stauffer 1985, Herrmann et a1 1984), we have investigated 
the fractal dimension of the elastic backbone (Herrmann et a1 1984) dEB as well. The 
elastic backbone is simply defined as the union of all minimal paths between these 
maximally separated sites, where a minimal path is the topologically shortest walk, on 
the fractal, from one site to another. 

In figure 3 the dependence of the fractal dimension of the conducting backbone 
on a is shown for df= 1.2, 1.4, 1.585 and 1.7. To obtain these data simulations were 
carried through seven generations (lattice size 128 x 128) and averages were taken over 
1200 clusters. It is seen that dBB is very dependent on a for small df, but for df=  1.7 
the dependence is very small. In fact, for df = 1.8 no a dependence could be observed 
for dBB. The most significant feature of figure 3, however, is the large a behaviour of 
dBB. In the limit a = 1 it can be seen that all four curves extrapolate to 1, so that 
dBB = df. This a = 1 limit corresponds to the direct generation of conducting backbones 
of arbitrary connectivity. For example, an analytical model for the percolation back- 
bone may arise from setting df= 1.60 (Herrmann et a1 1984) and a = 1. Of course, it 
remains to be seen if other properties of the percolation backbone scale with cluster 
radius in the same way, but if this is the case then this model will represent the first 
analytical representation of the percolation backbone. 

The dependence of the elastic and conducting backbone dimensions on the cluster 
fractal dimension is shown in figure 4 for the homogeneous limit, a = 0. Apparently, 
dBB depends linearly on the fractal dimension since the conducting backbone data 
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Figure 2. The variation in fractal structure with d,  and (I is shown. From the top down, 
the fractal dimension is 1.585, 1.4 and 1.2. From left to tight (I =0, 0.8. 

extrapolate nicely to the necessary limit de’ = dr at dr = d. On the other hand, the 
data for the elastic backbone do not appear to extrapolate linearly to the required 
limit d E B =  1 at dr= d, indicating a nonlinear dependence of the elastic backbone 
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Figure 3. The dependence of the fractal dimension of the conducting backbone on a is 
shown on relative axes for clusters of fractal dimensions 1.2 (m), 1.4 (+), 1.585 (A) and 
1.7 (1). Data were obtained by averaging over 1200 seventh-generation (128 x 128) clusters. 
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Figure 4. The fractal dimensions of the conducting (e) and elastic (m) backbones are 
shown as functions of d,  for a = 0. Within the errors in the data these backbones have 
the same fractal dimension for small d,, indicating that these low-dimensional fractals have 
very few circuits. 

dimension on the fractal dimension for large df. In the limit of small fractal dimension 
dBB = dEB = 1 + k(d,-- l ) ,  where k - 0.3. This equality of dBB and dEB is due to a dearth 
of circuits in low fractal dimension clusters-in purely branched structures the elastic 
and conducting backbones are identical. Finally, the dependence of the elastic back- 
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bone fractal dimension on a can be seen in figure 5 for df=  1.585. Since dEB is very 
close to 1, the errors in these data are fairly large, but qualitatively it would appear 
that in the heterogeneous link-blob limit, the elastic backbone fractal dimension 
approaches 1 .  
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Figure 5. The fractal dimension of the elastic backbone is stiown as a function of a for 
d,  = 1.585. Due to the low dimensionality of the elastic backbone the scatter in the data 
is fairly large. 

In summary, we have demonstrated two new classes of fractals: regular random 
fractals and the n-parameter model. The RRFS are characterised by non-fluctuating 
ensembles of discretely variable fractal dimension, so that the fractal dimension is a 
property of both the ensemble and an individual cluster. On the other hand, the 
n-parameter model is permitted to fluctuate, so that the fractal dimension is defined 
only for the ensemble. It is found that even the simplest ( n  = d = 2) n-parameter model 
has a rich behaviour, with both continuously variable fractal and backbone dimensions. 
Also, when the parameter a = 1, the two-parameter model produces backbone fractals. 
This suggests the possibility of using the a = 1, df= 1.60 as an analytical model for 
two-dimensional percolation backbones. 

Finally, it is interesting to conjecture about the potential of the n-parameter model 
in the limit of large n. If there is but a finite number of exponents, m, which describe 
fractal objects, then the parameter space for n > m must consist of a k-dimensional 
subspace ( k  < m) which contains all possible scaling properties of this model. If k = m 
then any fractal object can be mapped onto an appropriate version of this model. 
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